阐述等离子弧焊小孔行为的反翘电压检测方法(二)
本站发布日期:2020-10-27
阐述等离子弧焊小孔行为的反翘电压检测方法(二)
阐述等离子弧焊小孔行为的反翘电压检测方法(二):
3.试验结果与分析
3.1 试验条件下采集的反翘电压信号图3是通过扫描确定最佳探针位置后采集的稳定小孔过程的反翘电压信号(曲线1)和尾焰导电法采集的同步验证电压信号(曲线2) 。通过反翘电压信号与尾焰电压验证信号比较可见,两波形保持了很好的对应关系:在小孔长大过程中,等离子弧尾焰变大,反翘变小;相应的尾焰电压变大,反翘电压变小;在小孔收缩过程中,尾焰变小,反翘变大;故尾焰电压变小,反翘电压变大。该试验结果表明,反翘电压检测法可以准确的从工件正面采集焊接小孔的状态信息。
采用变化的焊接电流进行焊接时采集的到反翘电压信号。由图可知,在a 点以前,焊接电流较小,工件未熔透,未能形成焊接小孔,反翘电压较小。在a和b之间,焊接电流的增大,焊接熔深随之不断增加,并最终在b点形成小孔;此过程中,等离子反翘的尺寸角度不断增大,在即将熔透的瞬间( b点) ,达到最大值(可用于判断小孔是否形成) 。b、c之间是小孔稳定存在的阶段,随着焊接电流的增大,焊接小孔的直径整体呈增大趋势,所以,等离子反翘渐渐减小,相应反翘电压信号也呈减小趋势。c点以后,工件烧穿,反翘消失,反翘电压信号为零。在工件烧穿之前的瞬间,由于小孔形状的变化,致使反翘的角度发生周期性抖动,形成一个负的波峰。
3.2影响反翘电压信号的主要因素
文中对不锈钢( 1Cr18Ni9Ti) 和普通低碳钢(Q235)两种材料对反翘电压的影响进行了研究。结果发现,在正常焊接条件下,由于两种材料的导热系数,线膨胀系数,化学成分的较大差异,造成了熔池形状的很大差别,引起等离子反翘的最大角度以及反翘大小的明显差异,从而导致了在同样条件下检测的反翘电压不同。当采用不同材料进行焊接时,必须对探针的检测位置进行重新调整。
等离子弧反翘的温度分布不均匀,从中心到两端,温度逐渐降低。因此,当探针从反翘的中心向外部移动时,随温度的降低,造成鞘层电压的绝对值也相应减小,因此,检测到的反翘电压幅值也随之减小;当探针处在等离子体之外时,尽管该处温度很高,由于不存在等离子体,故检测电压为零。另外,当探针距离等离子反翘喷射中心太近时,由于反翘温度过高,探针将被烧毁,因而无法进行检测。总之,确定探针在反翘中的合理位置是非常关键的。
在其它焊接工艺参数不变的条件下,焊接速度变化时,热输入相应发生变化,导致焊接熔池形状不同。等离子反翘是在焊接反方向熔池的最大切线处喷出,故其最大反翘角度也会相应改变。焊接速度增大,最大反翘角度减小;焊接速度减小,最大反翘角度增大。所以,固定位置的探针所处的等离子鞘层的温度会随反翘形态的变化而变化,影响反翘电压的取值。
焊接电流的变化也会对检测电压的取值带来影响 。在小孔形成以前,焊接电流增大,熔池的熔深增加,反翘角度变大,检测电压增加,在即将形成小孔时达到最大值;小孔稳定存在时,焊接电流增大,则熔池小孔直径增加,最大反翘角度和高度相应降低,检测电压最大值变小,甚至有可能造成探针脱离等离子反翘,无法检测到电压信号。
4.结论
(1) 等离子反翘电压信号可以很好的反映小孔有无和小孔的直径,非常适合用于穿孔焊接的熔透控制。
(2) 材料、探针位置、焊接速度和焊接电流对等离子反翘电压值有较大影响,只有选择适当的检测位置才能得到理想的检测电压信号。
(3) 采用无源探针系统直接测量穿孔等离子弧焊反翘的电压,检测线路与焊接主回路隔离效果好,提高了可靠性和安全性,线路简便实用。
武汉海辰机电工程有限公司竭诚为您服务!
海宝易损件,Centricut易损件,数控切割机配品配件,工业烟尘净化除尘系统
任何数控切割和等离子电源问题随时来电咨询:13667239593
武汉海辰机电工程有限公司
经营范围:美国海宝等离子电源,美国海宝易损件,数控切割机,等离子切割机,火焰切割机,机用等离子切割系统,手持等离子切割机
更多专利设计,有效延长易损件的使用寿命,保护割炬,实现更高的切割质量,更快的切割速度,更低的切割成本,我公司是海宝在湖北的一级代理,美国原装进口,价格优惠,质量保证,欢迎致电垂询:13667239593董小姐